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|

This paper deals with the guestion of coalition formation in n-person .

{

cooperative games. Two abstract game models of coalition formation are :
proposed. We then study the core and the dynamic solution of these abstract

games. These models assume that there is a rule governing the allocation 1

of payoffs to each player in each coalition structure called a payoff
solution concept. The predictions of these models are characterized for
the special case of games with side payments using various payoff solution

concepts such as the individually rational payoffs, the core, the Shapley

- (1)

value and the bargaining set M1 . Some modifications of these models

are also discussed.
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SIGNIFICANCE AND EXPLANATION
The theory of n-person cooperative games is a mathematical theory
of coalition behavior. A fundamental problem posed in game theory is to
determine what outcomes are likely to occur if a game is played by
"rational players". I.e. given an n-person cooperative game, it is natural to
inquire (1) what will be the final allocation of payoffs to each of the
players and (2) which of the possible coalitions can be expected to form.

Since the publication in 1944 of the monumental work Theory of Games

and Economic Behavior [15] by von Neumann and Morgenstern, most of the

research in n-person game theory has been concerned explicitly with
predicting playecs' payoff and only implicitly (if at all) with predicting
which coalitions shall form. 1In this paper, the primary emphasis is on the
second aspect of coalition behavior, namely the formation of coalitions.
Two models of coalition formation are proposed based on the theory of
n-person games. As in most of game theory, our models are normative and
use only endogenous argurients, that is, only information contained in the

characteristic function is used.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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ON COALITION FORMATION: A GAME-THEORETICAL APPROACH

Prakash P. Shenoy

1. Introduction

The theory of n-person cooperative games is a mathematical theory of coali-

tion behavior. A fundamental problem posed in game theory is to determine
what outcomes are likely to occur if a game is played by "rational players".
I.e. given an n-person cooperative game, it is natural to inquire (1) what will
be the final allocation of payoffs to each of the players and (2) which of the
possible coalitions can be expected to form. These two aspects of coalition
behavior are closely related. The final allocation of payoffs to each of the
players depend on the coalitions that finally form, and the coalitions that
finally form depend on the available payoffs to each player in each of these
coalitions. Since the publication in 1944 of the monumental work Theory of

Games and Economic Behavior [15] by von Neumann and Morgenstern, most of the

research in n-person game theory has been concerned explicitly with predicting

players' payoff and only implicitly (if at all) with predicting which coalitions

shall form. In this paper, the primary emphasis is on the second aspect of

coalition behavior, namely the formation of coalitions. Two models of coalition

formation are proposed based on the theory of n-person games. As in most of
game theory, our models are normative and use only endogenous arguments, that

is, only information contained in the characteristic function is used.

A brief review of abstract games and its solutions is presented in Section 2.

In Section 3, two abstract game models of coalition formation are proposed. 1In
one approach, payoff allocations and coalition structures are modeled as the

outcomes of an abstract game on which an appropriate domination relation is

This research was sponsored in part by the United States Army under Contract
No. DAAG29-75-C-0024 and the National Science Foundation under Grant No.
MCS75-17385 AOl.
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defined. In another approach, coalition structures alone are modeled as out-

comes. In both cases, we study the core and the dynamic solution of the

abstract game. The two models are then compared. Section 4 deals with the
representation of the models by means of digraphs. In Sections 5-8, the solu-

tions of the abstract games are characterized for the special case of games with s
side payments using various payoff solution concepts such as the individually

rational payoffs, the core, the Shapley value and the bargaining set M{l).
Finally in Section 9, we discuss possible modifications in the definition of
the domination relation in the case where coalition structures alone are modeled

as outcomes.

2. Abstract Games and their Solutions

An abstract game is a pair (X, dom) where X is an arbitrary set whose

members are called outcomes of the game, and dom is an arbitrary binary rela-

tion defined on X and is called domination. An outcome x € X 1is said to be

accessible from an outcome y € X, denoted by x «y (or y -+ x), if there v
exists outcomes zo = x, zl""'zm-l' zm =y, Where m is a positive integer

such that

(2.1) X =2z, dom z1 dom 22 dom ... dom zm~1 dom zm =y .

Also assume x “« X, i.e. an outcome is accessible from itself. Clearly the
binary relation accessible is reflexive and transitive. Two outcomes x and
y which are accessible to each other are said to communicate and we write this
as x <> y. Since the relation accessible is transitive and reflexive, it
follows that

Proposition 2.1. Communication is an equivalence relation. v

We can now partition the set X into equivalence classes. Two outcomes

are in the same equivalence class if they communicate with each other.

0 A R —
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The set
(2.2) Dom(x) = {y € X : x dom y}
is called the dominion of x. Also, we define the dominion of any subset
ACX by

(2.3) pom(a) = |_J Dom(x) .
X€A

The core C (due to Gillies [9] and Shapley) of an abstract game is defined

to be the set of undominated outcomes. 1I.e.

(2.4) C = X - Dom(X) .

We can rewrite the definition of the core in terms of the relation accessible
as follows.

(2.5) C=1{xe X:V¥ye X, y#x, we have y # x} .

I.e., in the terminology of Markov chains, the core is the set of all absorbing
outcomes. Note that each outcome in the core (if nonempty) is an equivalence
clas§ by itself.

An elementary dynamic solution (elem. d-solution) of an abstract game is

a set SC X such that

(2.6) if x€ S, ye X-S then y+ x, and
(2.7) if x,y € S, then x<«y and y < x .
It can easily be shown that

Proposition 2.2. An elem. d-soclution is an equivalence class.

The converse, however, is not always true. Condition (2.6) require S to

be (in the terminology of Markov chains) a non-transient (recurrent, persistent)

equivalence class.
The dynamic solution (d-solution) P of an abstract game is the union
of all distinct elem. d-solutions. 1I.e.

(2.8) P = L_J {sCx :s is an elem. d-solution} .




We have the following easy result.

Proposition 2.3. For all abstract games, C C P,

It is clear that the dynamic solution always exists and is unique. How-
ever, it may sometimes be empty. However, if X 1is a finite set, we have the

following two results.

Lemma 2.4. If X is a finite set, then P is the d-solution if and only if

P satisfies

(2.9) ¥x, vy e P, yex Iff Xy
(2.10) If x€ P, y€ X~P, then y ¥ x. And
(2.11) If ye€ X~P, then Ix e P such that x « vy .

Theorem 2.5. If X is a finite set, then the d-solution is always nonempty.
For proofs of these assertions and for a behavioral interpretation of the
dynamic solution, see Shenoy [21]. The dynamic solution has also been defined

independently by Kalai, Pazner and Schmeidler [11,12].

3. The Models

We shall first introduce some notation and definitions. Let
N ={1,...,n} denote the set of players. Let T be an n-person cooperative
game (with side payments, without side payments or a game in partition func-
tion form). Let ZN denote the set of all subsets (coalitions) of N and 1
denote the set of all partitions (coalition structures) of N. Let

n n
S: 0> ZE be a payoff solution concept, where 2E denotes the set of all

subsets of the n~dimensional Euclidean space e". Intuitively, given that the

players in N align themselves into coalitions in the c.s. P € I, we interpret
S(P) as the set of all likely disbursements of payoffs to players in N. E.g.

S may denote the individually rational payoffs, the core, a vVvN-M stable set,

the Shapley value, the bargaining set M{l). the kernel, the nucleolus or any
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other payoff solution concept that indicates disbursement of payoffs as

solutions of an n-person cooperative game. For P € N, S(P) may be

the empty set § (e.g. the core), or a single point in E" (e.g. the
Shapley value or the nucleolus) or a nonempty subset of 2 (e.g. the
bargaining set Mii) or the kernel). If S(P) = § (interpreting this
fact as players unable to reach an agreement on the disbursement of

payoffs when they are aligned into coalitions in P), then we will

assume for simplicity of exposition that P is not viable. Let I(S)
denote the set of all viable coalition structures with respect to the

payoff solution concept (p.s.c.) S, i.e.,

(3.1) nEs) = {P e n: S(P) # 9}.

Definition 3.1. A solution configuration with respect to p.s.c. S is

a pair (x,P) such that x ¢ S(P) and P ¢ N(S).

. A solution configuration w.r.t. p.s.c. S representé a possible
outcome of the n-person cooperative game where S represents any

appropriate payoff solution concept. Let SC(S) denote the set of all

solution configurations w.r.t. p.s.c. S, i.e.

o S AP

| (3.2) SC(S) = v [S(P) x {P}]
Pell(S) ;

We now define a binary relation, domination, on the set SC(S) as follows:

Definition 3.2. Let (x,P,) and (y,Pz) belong to SC(S). Then (x,Pl)

dominates (y,Pz), denoted by (x,Pl) dom (y,P2) iff

(3.3) 3 a nonempty R ¢ Pl such that X; >y for all i ¢ R.

RN S e W b SO T I




Intuitively, if (x,P&) dom (y,P&), then the players in some coalition R

in c.s. Fi prefer Pi to Pa. We require the players in subset R to

h
o
|
be together in a coalition in c.s. Pi so that there is no conflict of '

g interest between these player's preference for Pi and their allegiance

to the other players in their coalition.

The dominance relation as defined above may be neither asymmetric
nor transitive. We now have an abstract game (SC(S),dom) where SC(S) |
is the set of outcomes and dom is a binary relation on SC(S). For
this abstract game, we look at the core and the dynamic solution as '%
'f defined in Section 2. F

Definition 3.3. Let T be an n-person cooperative game+ ard S be a

p.s.c. The core of solution configurations w.r.t. p.s.c. S, denoted ,

by JO(S), is the core of the abstract game * (SC(S),dom).

Definition 3.4. Let T be an n-person cooperative game and S be a B

p.s.c. The dynamic solution of solution configurations w.r.t. p.s.c.

8, denoted by Jl(S), is the dynamic solution of the abstract game

(sc(s) ,dom).
From Proposition 2.3, we obtain the following result.

Proposition 3.1. JO(S) - Jl(S).

The core of an abstract game is a very intuitive and plausible solu-

tion concept. However, for some games and for certain p.s.c., JO(S) ¥
may be an empty set. In such cases, we can proceed to look at Jl(S) i

as a solution concept. If the p.s.c. § is such that S(P) is a unique - ,

fIn this section, T denotes an n-person cooperative game with side pay- ; i:
ments, without side payments or a game in partition function form.

r
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point in E® for each P e N(S) with n(S) # #, then the set SC(S)

is finite and nonempty. By appealing to Theorem 2.5, we conclude the

following result.

Proposition 3.2. Let T be an n-person cooperative game and S be a

p.s.c. such that QI(S) # # and assume that S(P) is a unique point in 3

E® for each P ¢ m(S). Then 3 (8) # 8. |

In another approach, we model just the set of all viable coalition Qﬂ

structures JI(S) as the outcomes of an abstract game. A domination

relation on I(S) - is defined as follows.

Definition 3.5. Let Pl’ P2 € I(S), P #Re 2N and S be a p.s.c.

Then Pl dominates P2 via R w.r.t. p.s.c. S, denoted by

Pl domR(S) P2, iff

» (3.4) R e Pi and

(3.5) for each y € S(PQ), 3 an x € S(Pl) such that X; >y Vi e R
3 Intuitively, if Pl domR(S) P2, then the players in subset R prefer

Pl to P2 because by Condition (3.5), no matter how the players disburse

the payoffs corresponding to c.s. P each player in R will do better

29
] in c.s. Pl' Condition (3.4) is imposed for the same reasons Condition

b B
‘ . (3.3) is imposed in Definition 3.2.
f 2 Definition 3.6. Let Pl’ P2 € M(S) and S be a p.s.c. Pl dominates
1

P2 w.r.t. S, denoted by Pl dom(S) P2, iff

(3.6) 3 a nonempty R ¢ N such that Pl domR(S) P2.

SRR D s s




We now have another abstract game (N(S),dom(S)) where I(S) is the
set of outcomes and dom(S) is the binary relation on 1(S). Once again

we look at the core and the dynamic solution of this abstract game.

Definition 3.7. Let T be an n-person cooperative game and S be a

p.s.c. The core of coalition structures w.r.t. p.s.c. S, denoted by

KO(S), is the core of the abstract game (N(S),dom(S)).

Definition 3.8. Let T be an n-person cooperative game and S be a

p.s.c. The dynamic solution of ccalition structures w.r.t. p.s.c. S,

denoted by Kl(S), is the dynamic solution of the abstract game

(n(S),dom(S)).
Once again, by appealing to Proposition 2.3, we have:

Proposition 3.3. KO(S) c KI(S).

Also, since N(S) is always finite, we have:

Proposition 3.u4. KI(S) 0.
The following results gives a comparison of the two models.

Theorem 3.5. Let T be an n-person cooperative game and S be a p.s.c.

Then we have
KO(S) > (P e II; (x,P) ¢ JO(S)}.

Proof: Let Pl € {Pel: (x,P) € JO(S)}. Then 3 x ¢ S(Pl) such that
(x,Pl) is undominated in SC(S) which implies that Pl is undominated

(w.r.t. 8) in N(S), i.e., P e K (S). []
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Another consequence of the definitions of KO(S) and JO(S) is as follows:

Theorem 3.6. Let T be an n-person cooperative game and S be a p.s.c.
¢ n
such that V P ¢ I, S(P) is either a single point set in E or an

empty set. Then

KO(S)

{Pen: (x,P) € JO(S)} and

JO(S) {(S(P),P): P ¢ KO(S)}.

1f JO(S) # #, then the solution configuration model indicates both
coalition structures and distribution of payoffs among thé players as
solutions in JO(S) whereas the coalition structure model indicates only
coalition structures as solutions in KO(S). Also by Tﬁeorem 355, JO(S)
indicates fewer (or at most an equal number of) coalition structures as
solutions compared to KO(S). However, if the p.s.c. 8 is such that
for each P € I, S(P) is either a single point in E" or an empty
set, then the two models are identical (except in form) and indicate the

same results.

4. Representation by Digraphs

Since the number of coalition structures is finite, we can represent
the abstract game (N(S),dom(S)) of a game on N by means of a directed
graph (or digraph). Given a payoff solution concept S, let D = D(S)
be a digraph whose vertex set V(D) = N(S) and whose arc set A(D) is

given by

(4.1) A(D) = {(Pl’Pz) € N(S) xM(S): P, dom(S) P}




We call such a digraph D the domination digraph of the abstract game

(n(S),dom(S)).

Exampie 4.1. Let T be a 3-person game on {1,2,3}. Let S be a p.s.c.

defined as follows:

Let 0<ac<bc<ec d be real numbers such that ¢ > a+b and

r(0,0,0) if P

{{1}, {2}, {3}}

(0,3,0) if P {{la2}s {3}}

S(P) =ﬁ

(0,0,b) if 'P = {{1,3}, (2})}

< C-b}‘ if P = {{l}’ {2,3}} or {{la233}}

L{(O, Xy» c-x2): ax<x,<

To condense notation, we shall drop the braces around coalitions in coali-
tion structures and, for example, denote {{1}, {2,3}} by (1)(23).

Note that

(1)(23) dom(S) (1)(2)(3),
(1)(23) dom(S) (12)(3),
(1)(23) dom(S) (13)(2).

The domination graph of the game TI' is shown in Figure 4.1.

Let (Pl’P2) € A(D). Then we say Pl is adjacent to P2 and P2

is adjacent from Pl' The outdegree, od(P), for P e N(S) is the

number of c.s.'s adjacent from ;t and the indegree, id(P), for

P € N(S) is the number adjacent to it. Then, in terms of this
terminology; the core of the abstract game (M(S),dom(S)) is given by
4.2) KO(S) = {P e V(Di: id(P) = 0}.

In Example 4.1, KO(S) = {(1)(23), (123)}.

-10-




i (1)(2)(3)

(12)(3) ¢ (123)

ADA o T A e )i s e A 5 <t =0
.

(13)(2 )€ (1)(23)

Figure 4.1. The domination digraph of game in Example 4.1.

The converse digraph D' of D has the same vertex set as D and
the arc (Pl’P2) € A(D') <= (P2,Pl) € A(D). Thus the converse of D
is obtained by reversing the direction of every arc in D. If D = D(S)
is the domination digraph of the abstract game (II(S),dom(S)), then we

call its converse D' = D'(S) the transition digraph of the abstract

game (N(S),dom(S)). The transition digraph of the game in Example 4.1

is shown in Figure 4.2.

(1)(2)(3)

(12)(3) e (123)

Figure 4.2. The transition digraph cf the game in Example 4.1.

-11~-
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To define the dynamic solution in terms of the transition graph, we

need a few basic definitions from graph theory (cf. Harary [10]). A

(directed) walk in a diéraph is an alternating sequence of vertices and

arcs Po,el,Pl,...,en,Pn in which each arc e, is (Pi-l’pi)' A
L closed walk has the same first and last vertex. A path is a walk in -
i

which all vertices are distinct; a cycle is a nontrivial closed walk

with all vertices distinct (except the first and the last). If there is

Bl a path from Pl to P2, then P2 is said to be accessible from Pl.

A digraph is strongly connected or strong if any two vertices are mutually

E | accessible. A strong component of a digraph is a maximal strong subgraph. ’
Let Tl,T2,...,Tm be the strong components of D . The condensation

D*# of D has the strong components of D as its vertices, with

an arc from Ti to Tj whenever there is at least one arc in D from

a vertex of Ti to a vertex of Tj' (See Figure 4.3.) It follows from

the maximality of strong components that the condensation D* of any
graph D has no cycles. Let D'(S) be the transition graph of the »

abstract game (N(S),dom(S)) with strong components Tl’Tz""’Tm'

5f Figure 4.3. A digraph and its condensation.

-12- (3
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Then the dynamic solution of the abstract game is given by

(4.3) l(l(S) = uv(T,: od('l‘i) = 0 in the condensation D'#¥},

5

In Example 4.1, Kl(S) = {(1)(23), (123)}.

5. Solutions with Respect to the Individually Rational Payoffs

In the next four sections, we will characterize the solutions of the
abstract games for the special case of games with side payments using various
payoff solution concepts.

A cooperative n-person game in characteristic function form with side

payments is a pair (N,v) where N = {1,...,n} denotes the set of players
(as stated before) and v is a nonnegative real-valued function defined
on the subsets of N which satisfies v(#) =0 and v({i}) =0 forf
all i€ N.

The individually rational payoffs (i.r.p.) corresponding to coalition

structure P = (Pl"°"Pm) € I is the set

1(P) = {x e E™: 2 x, =v(P,) forall j=1,...,m and
; i 3
1§Pj

X, > v(i) fort all i€ N}.

+This condition and the nonnegativity restriction on v causes no real loss
of generality since all the payoff solution concepts we consider are
invariant under strategic equivalence.

H

To condense notation, we shorten expressions like v({i,j,k}) to w(ijk)

and so on.
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When P = (N), I((N)) is also referred to as the set of imputations.

Since I(P) is nonempty for all P e I, we have
n(I) = m.

A game (N,v) is said to be superadditive if

P N
(5.1) Rl n R2 =@, Rl,R2 €2 = v(Rl) + v(Rz) _<__v(R1 v R2)

and strictly superadditive if strict inequality holds in Relation (5.1).

Define the worth of a coalition structure P in the game (N,v)

by
(5.2) w(P) = | wv(p.).
P.cP J
3
Let
(5.3) : z = max w(P)
Pen
and define
(5.4) : m = P e I: w(P) = zl.

If xeE' and Rc N, 1let x(R) denote Z X; . Then we have the
ieR

following theorem.

Theorem 5.1. Let T be an n-person cooperative game with side payments.

Then KO(I) # #. In particular, we have KO(I) > nz.

Proof. Let Pl = (Pi,P;,...,P;) € “z' Suppose 3 P € T such that

P dom(I) Pl, i.e. 3R e P such that P domR(I) PL. Now we can

RS -~ = R T B

i i b i i

-~ e
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m
write R= u (Rn Pi). Pick y € I(Pl) such that y(Rn Pi) = V(P;)
i=1l

if Rn Pi £9 forall i = 1,2,...,m. Since P domR(I) Pl,
H Ix e I(P) s.t. X; >y; forall ieR. I.e. v(R)=x(R)>y(R) =

) v(P}). Pick P? e as follows. P2 = {R} u (P'-{p}: P} n R # #}}
{nR¥ e
1

1
v (Pi - R: Pi

P

nR #91)}. Then w(P2) > w(Pl), a contradiction! This

completes the proof. [:]

AR BN L kN L Ay 14

The following example will show that, in general, we cannot make a stronger
statement than in the theorem above.

Example 5.1. Let .T be a 4-person game with
v(12) = v(34) = v(23) = 1, and v(R) = 0 for all other Rc N.

Let Pl = (22)(34), P2 = (14)(23) and P3 = (1)(23)(4). w(Pl) =2,

“'(Pz) = "(Ps) = 1. But KO(I) - {Pl, P2, Ps}'

However, with a slight assumption, we can claim the following.

Theorem 5.2. Let T be an n-person game with side payments such that

(N) € n,- Then KO(I) =1

Proof: From Theorem 5.1 we need prove only KO(I) cm,. Let Pl el

such that Pl ¢ L i.e. w(Pl) < z. Then (N) dom(I) Pl. This is seen

as follows. Let X € I(Pl). Then x(N) = w(Pl) < z. Define y so that
| . y; =%t (z - w(Pl))/n for all i e N. Then y e I({N}) and y; > %
for all ie N. []

Corollary 5.3. Let I be a superadditive game. Then KO(I) = nz.

Furthermore, if I is strictly superadditive, then K, (I) = {(N)}).




Proof: T superadditive = (N) ¢ nz, and T strictly superadditive
=0, = {}. []

For the solution configurations model, no general existence result is

possible as is illustrated by the following example:

Example 5.2. Let I = (N,v) Dbe a 3-person game with

v(12) = v(13) = v(23) = 2, v(123) = 2.5.

It can easily be shown that for this game JO(I) = p.

6. Solutions with Respect to the Core

Let (N,v) be a cooperative game with side payments. Then the core

of the game (N,v) corresponding to c.s. P e N is defined by
(6.1) Co(P) = {x e I(P): x(R) > v(R) for all R ¢ Ny,

The core corresponding to a particular c.s. may be empty. Hence in general
N(Co) # N. In fact, for some games the core corresponding to every c.s.
may be empty, i.e., IN(Co) = @#. A characterization of KO(Co) and

Jo(Co) is as follows.

Theorem 6.1. Let (N,v) be a cooperative game with side payments. Then,

KO(Co) = N(Co) = {P: Co(P) # 0}.
Also ;
Jo(Co) = SC(Co) = v [Co(P) x {P}]. .
Pen(Co)
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Proof: Let Pl‘ P2 e N(Co). Suppose Pl domR(Co) P2 for some R € Pl.
i

let y ¢ Co(Pz). Then I x ¢ Co(Pl) s.t. x; >y, for all i € R.
I.e. x(R) > y(R). But since R ¢ Pl’ x(R) = v(R). Hence y(R) < v(R)
contradicting the fact that y € Co(Pz). The proof of the second

assertion is similar to the first. [ ]

Corollary 6.2. Let (N,v) be a cooperative game with side payments.

Let S be a p.s.c. such that, for all P e N, S(P) ¢ 1(P), and
S(P) n Co(P) # # whenever Co(P) # #. Then KO(CO) c xo(S) and

Jo(Co) c JO(S‘ (as subsets of I).

In light of Theorem 6.1 we would like to characterize the coalition
structures with nonempty cores. The next two theorems along with a
known characterization of games with nonempty cores corresponding to

the grand coalition N accomplish this task.

Theorem 6.3. Let (N,v) be a cooperative game with side payments. If

N(Co) # #, then IN(Co) =T .

Proof: Let Pl € N(Co), and suppose Pl { M,. Then 3 P2 € T such
that w(P2) > w(Pl). Let x ¢ Co(Pl). Then x(R) > v(R) for all
Rc N which implies that w(Pl) = x(N) > w(P2) and this is a contradiction!
Hence 1(Co) c Ilz.
Let Pl € Ilz and assume P2 € N(Co) c I[z. Let x e Co(P2). Then
x(R) > v(R) for all Rc N. If x(P) > v(P) for some R ¢ Pl; then
w(Pz) = x(N) > w(Pl), contradicting the fact that Pl € nz. Hence
x(P) = v(P) for d11 P € Pl = X € Co(Pl) - Pl € N(Co). Therefore |
. i ‘
N(Co) > I, . O

e

-17-




Corollary 6.4. Let (N,v) be a game with side payments. Then for all

P P2 e Nn(Co), Co(Pl) = Co(P2).

1’

Corollary 6.5. Let (N,v) be a game with side payments. If there is a

.

Pe n: such thét Co(P) = ¢, then I(Co)

Given a game T = (N,v) define a game Pz (N,vz) derived from T as
follows.

z if R=N
(6.2) vz(R) =

v(R) for all other Rc N

where 2z = max w(P).
Pell
When th ce is more than one game under discussion, we shall denote the
sets Co(P), n(Co) and n, by Co(P,r), mn(co,r), and nz(r),

respectively.

Theorem 6.6. Let T = (N,v) be a game and r, beas in Relation

(6.2). Then if Co(P,I') # #, Co(P,r) = Co((N),rz).

Proof: From the definition of Pz it is clear that for P # (N)
Co(P,r) = Co(P,rz). From Theorem 6.3 we obtain H(Co,Pz) = nz(rz).
Since (N) ¢ nz(rz), by Corollary 6.4, Co(P,Pz) = Co((N),rz). Hence

the theorem follows. [ ]

Games with nonempty cores corresponding to the grand coalition have
been characterized by Bondareva [4,5] and Shapley [19]. For the sake
of completeness we will repeat this characferization here.

A balanced set B is defined to be a collection of subsets R of

N with the property that there exist positive numbers GR VRe B

s Sl o S Sl 2 i
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called weights, such that for each i e N we have

(6.3) ) 8% s
{ReB: icR}

A game (N,v) is called balanced iff

(6.4) ; I 8gv(R) < v(N)
ReB

holds for every balanced set with weights {GR}. The following theorem

was proved by Bondareva [4,5] and Shapley [19].

Theorem 6.7. Let (N,v) be a game. Then Co((N)) # # if and only

if the game is balanced.

Corollary 6.8. Let T = (N,v) be a game. Then I(Co,T') # @ if and

only if the game (N,vz) is balanced.

Proof: (Necessity): M(Co,T) # § => Co((N),(N,vz)) # § (by Theorem 6.6)
= (N,vz) is balanced (by Theorem 6.7).

(Sufficiency): If Pz = (N,vz) is balanced = Co((N),rz) 29 (by
Theorem 6.7). If (N) € nz(r) then T = I; and we are finished.
Otherwise 3 P ¢ Hz(Pz) such that P # (N). Then, Co(P,T) = Co(P,Fz) =

Co((N),T,) # 8. []

Thus we have completely characterized Ko(Co) and Jo(Co) for all

games with side payments.

Example 6.1. (A game with no solution. See Lucas [13,14].)

Let N = {1,2,3,4,5,6,7,8,9,10} and v be given by




v(N) = 5, v(13579) = 4,
v(12) = v(34) = v(56) = v(78) = v(910) = 1,

v(3579) = v(1579) = v(1379) = 3,

v(357) = v(157) = v(137) = 2,
v(359) = v(159) = v(139) = 2,
v(1479) = v(3679) = v(5279) = 2, and

v(R) = 0 for all other R c N.

In this game z =5, N = {(N), P = (12)(34)(56)(78)(910)} and
Co((N)) = Co(Pl) = {x: x(12) = x(34) = x(56) = x(78) = x(910) = 1,

and x(13579) > 4}. By Theorem 6.1,

Ko(Co) {(N),Pl], and

J,(Co) Co((N))X{(N),Pl}.

7.. Solutions with Respect to the Shapley Value

Shapley [17 ] defined a unique value satisfying three axioms for all
n-person cooperative games with side payments. It was assumed that
the grand coalition would form. Later, Aumann and Dreze [2] generalized
the axioms to define the Shapley value for all coalition structures.

A permutation a of N is a one-one function from N onto
itself. For R ¢ 2“. write oR = {ai: i ¢ R}. If v is a game on
N, define a game asv on N by

(7.1) (axv)(R) = v(aR) for all R € 2“.

-20-
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Also, if v and u are games on N, define a game v+u on N by

(7.2) (v#u)(R) = v(R) + u(R) for all R e 2'.
Call ac.s. P= (Py,...,P ) invariant under a if de = Pj for all
j=1,...,m. Player i is null if v(Ru (i)) = v(R) for all R e 2".

Let G" denote the set of all games with side payments on N. Since

we assume that for all games with side payments, v(#@) =0 and v(i) = 0

viehN, GN is a Euclidean space of dimension ot (n+l).

Fix N = {1,...,n}) and P = (Pl,...,Pm) € . The Shapley value

corresponding to c.s. P is a function OP from GN to E® i.e. a

function that associates with each game a payoff vector satisfying the

following axioms:

A.1 (Relative Efficiency): OP(V)(Pj) = v(Pj) for all j = 1,...,m.

A.2 (Symmetry): For all permutations a of N under which P is

invariant,

OP(u*v)(R) = ¢p(v)(aR).

A.3 (Additivity): 0P(v+u) = ¢P(v) + ¢P(u).

A.4 (Null Player Axiom): If i is a null player, then OP(V)(i) = 0.

When P = (N), the above axioms are equivalent to Shapley's axiom which

specify a unique value ¢(v) = (¢l(v),...,on(v)) given by

5 2 (r-1)1(n-r)! g f :
(7.3 4;(v) = 0 (V) = Rzn SRR [V(R) - v(R - (1))

where r = IRI, the cardinality of coalition R. For each R € 2“,

denote by v|R the game on R defined for all T c R by

-21-
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(7.4) : (v| RI(T) = w(T).

Theorem 7.1. Fix N and P = (Pl,..

value 'P and it is given for all j = 1,...,m and i € Pj by

.,Pm). Then there is a unique

(7.5) (epv)(i) = (o(Pj)(lej))(i).

Proof: See Aumann and Dreze [2, pp. 220-221].

Since O(P)* is nonempty for all P e N, N(4) =M. Also note from
(7.3) « that if v is superadditive, then ®(P)(i) > 0 and hence
®(P) € I(P). Also, since ¢(P) consists of a unique outcome for all
P e, by Theorem 3.6 the s.c. model and the c.s. model give identical
‘results. For convenience, all the results in this section are stated only
for the c.s. model.

- A partial existence theorem for KO(O) is as follows:

Theorem 7.2. Let T be an n-person game in which the only coalitions
with positive values are all the (n-1l)-person and n-person coalitions.

Then KO(Q) 0.
Proof: Let us denote the game as follows:
v(i) = 0 for all i € N,

v(N - (1)) = a; for all i e N,

v(N) = b, and v(R) = 0 for all other R c N.

+ﬁhen there is no doubt about the game v under consideration, we shall
denote op(v) by ¢(P) which is consistent with the previous section.

=22
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We can assume (by relabelling of the players) that

(7.6) 4, £33, < ..y % a,

2 n

n
Let a= ] a, and N_ ={P e M w(P) = a}. Using (7.3) and (7.5)
e S ¥ n

(7.7) o((N))(i) = ((n-1)b + a - n~ai)/(n(n—l)).
By (7.6) we have
(7.8) *((N))(1) > ¢((N))(2) > ... > &((N))(n)

Also,

'ai/(n-l) Fori - Jh=nl i oon

(7.9) e ((N-1)(i))(§) = i

1"
e

0 for j

Clearly, the only c.s.'s we need look at are - (N) and (N-i)(i) for

i=1l,...,n. All the c.s.'s not in na (except (N)) are dominated
n
by c.s.'s in I, . From Expressions (7.7), (7.8) and (7.9) it follows
n
that (N) dom(®) (N-n)(n) iff

¢((N))(n-1) > ¢((N-n)(n))(n-1)
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i.e. iff

b>(n(a_+a ) - a)(n-1).

Mso if a =a , (ie. (N- (n-1))(n-1) ¢ ““n) then

(N) dom(¢) (N - (n-1))(n-1)

iff
#((N))(n) > ¢((N - (n-1))(n-1))(n),

d.0. iff

b> (n(a + an_l) - a)/(n-1).
Now,

(N-n)(n) dom(®) (N)
iff
#((N-n)(n))(1) > &((N))(1),

i.e. iff

b < (n(an + al) - a)/(n-1).

Hence we have

Tt SRS
T T Y




(N) If b> (n(an + an-l) - a)/(n-1)

i )\ {
xo(o) = a if b < (n(an + al) - a)/(n-1)

(N) v na 6therwise.

n : | .[:]

Corollary 7.3. Let T be a 3-person game with side payments. Then

xo(o) 0.

In general, this is the strongest existence result we can obtain. 1I.e.

there is a 4-person game for which KO(Q) = §. This is shown in Example

7.5.
If Co(P) # §, ¢(P) may not belong to Co(P). Hence Corollary 6.2.

is not applicable for the Shapley value. The following example illustrates
this fact.

Example 7.1. Let N ={1,2,3} and v be given by v(1) = v(2) = v(3) = o,
v(12) = 50, wv(13) = 50, v(23) = 56, and v(123) = 80. Then the Shapley

value is given by:

(24.67, 27.67, 27.67) if P = (123)
(0, 28, 28) i1f P = (1)(23)
o) = { (25, 0, 25) if P = (13)(2)
(25, 25, 0) if P = (12)(3)
L (0, 0, 0) if P = (1)(2)(3)

Note that Co((123)) = Conv{(20, 30, 30), (24, 26, 30), (24, 30, 26)}

but @((123)) ¢ Co((123)). The transition digraph is shown in Figure 7.1,

and hence K (9) = xl(o) = (1)(23).

=25«
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(1)(2)(3) !
} I
t

(12)(3) (123) ’

_~,—-
(13)(2) (1)(23) : |

Figure 7.1. ‘The transition digraph for Example 7.1.

The above example illustrates a weakness of the Shapley value in that r
the Shapley value is derived entirely from the characteristic function
rather than the bargaining positions of the players in the process of
coalition formation. ' However, the Shapléy value has been extensively
used as an a priori measure of power of players in "simple'" games. Hence
the study of KO(Q) and Kl(0) is most appropriate for simple games.

- The class of all simple games forms a subclass of the class of all

cooperative games with side payments. A simple game is a game in which
every coalition has value either 1 or 0. A coalition R < N is winning |
if v(R) =1 and losing if v(R) = 0. A simple game can be represented
by a pair (N,W) where N is the set of players and W is the set of

winning coalitions. A simple game is monotonic iff R ¢ W and

T>R=T e¢W, and superadditive (or proper) iff Re W = N - R ¢ W.

Superadditivity implies monotonicity in simple games. A winning coali- o

tion R is called minimal winning if every proper subset of R is losing.

|
A monotonic simple game can be represented by the pair (n,w”) where W" ‘i

is the set of all minimal winning coalitions. If W™ = {{i}}, then

piayer i is said to be a dictator. If jJ ¢ W™ # @, then player j




is said to be a veto player. If k ¢ uW™ then player . k is said to be a
dummz.- Dummies play no active role ih the game and for all practical

purposes can be omitted from the set of players. A weighted majority game

is a monotonic simple game that can be represented by
(7.10) [q: al,a2,...,an]

where q > 0 is called the quota, a; >0, i=1,...,n is the weight

of the ith player, and R € W <= E a; > q. Expression (7.10) is said to
ieR

be a weighted majority representation of the simple game. Two weighted

majority representations are said to be equivalent if they represent the
same simple game. E.g. [2; 1,1,1] and [5; 2,3,4] are equivalent since
both represent the game ({1,2,3}, w" = {(12), (13), (23)}). Not every

monotonic simple game may have a weighted majority representation (see Shapley [18]).

Example 7.2. The most common of all simple games is the straight majority

game Hn, n odd, in which

W™ = {Rc N: |R| = (n+1)/2}

where |R[ denotes the cardinality of coalition R. The Shapley value

is given by

1/|[R| if ieRelW, ReP
e(P)(i) =
0 otherwise.

It'is clear that




Kl(o) S'KO(O) = {P.¢ N: P contains a minimal winning coalition}.

Example 7.3. The pure bargaining game Bn, is given by W™ = ((N)}.
The Shapley value is given by

1/n  if P = (N)
o(P)(1) =

0  otherwise

clearly, Kl(o) = Ko(o) = {(N)}.

Example 7.4. Let T be a proper game with a dictator. Then

1 if i 1is a dictator
e(P)(i) =
0 otherwise.

Hence 'Kl(o) = KO(O) = [I. Note that every player who is not a dictator is

a dummy. So essentially we have a l-person game in which the only player

is winning by himself.

Example 7.5. Consider the weighted majority game [3; 2,1,1,1]. The

minimal winning coalitions are w™ = {(12), (13), (14), (234)}. The

Shapley value is given by

i b e e, St




(2/3, 1/6, 1/6, 0) if P = (123)(u)
(2/3, 1/6, 0, 1/6) if P = (124)(3)
(2/3, 0, 1/6, 1/6) if P = (134)(2)

#(P) ='< (1/2, 1/2, 0, 0) 1f P = (12)(3) or (12)(3)(w)
(1/2, 0, 1/2, 0) if P = (13)(24) or (13)(2)(s)
(1/2, 0, 0, 1/2) 1f P = (14)(23) or (18)(2)(3)
(0, 1/3, 1/3, 1/3) if P = (1)(234)
(0, 0, 0, 0) otherwise.

The transition digraph of the game is shown in Figure 7.2. Since all c.s.'s
that contain only losing coalitions are dominated, these are omitted from

~ this transition digraph. Note that KO(O) = #. However,

xl(o) = {(1)(234), (12)(3)(4), (12)(34), (13u)(2), (13)(2u)

(13)(2)(u), (124)(3), (14)(23), (14)(2)(3), (123)(M4)}.

A closer look at the Shapley value for different c.s.'s in Example 7.5
reveals the following observation. If players 1 and 2 who are in a winning
coalition with 3 in the c.s. (123)(4) decide to expel player 3 ffom the
coalition and form the smaller winning coalition (12), one would expect
both players not to decrease their power in the smaller winning coalition
(12) since there are fewer players to share the same amount of power.
However, player 1 actually does decrease his power from 2/3 to 1/2.

We shall call this phenomenon the paradox of smaller coalitions. To under-

stand why this phenomenon occurs, let us look at Theorem 7.1. It states

dcntion L bl e o " .




(12)(34)
(12)(3)(u)

(134)(2)

$ (124)(3

(1234)
(13)(2u4)
(13)(2)(4)
(123)(u) (14)(23)
(14)(2)(3)

Figure 7.2. The transition digraph in Example 7.5.

that given a c.s. P = (Pl,...,Pm) the Shapley value of player i in

coalition P, depends only on the subgame lej. I.e. the Shapley

3
value of a player in a coalition is oblivious of the presence of other
players not in the coalition for bargaihing purposes. We shall regard
this phenomenon as a "flaw" in the properties of the Shapley value. To

make the above discussion more formal, let T = (N,W) be a simple

game and o be a payoff value concept (i.e. for all games and fér

each P e NI, o(P) is a single point in En, where n = the number of

players). We say I does not exhibit the paradox of smaller coalitions

w.r.t. payoff value concept ¢ iff the following holds:

Let P, P2 € N such that Pk € Pl' Pk e W, Pkl c Pk
is such that Pkl e W, and Pkl € P2. Then
o(Pb)(i) z_a(Pl)(i) for all i e Pkl'

=-30-
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The following result is a consequence of the above definition.

Theorem 7.4. Let T be a proper simple game that does not exhibit the

paradox of smaller coalitions w.r.t. ¢. Then KO(O) 0.

Proof: Let T e W™ such that IT| < |R| for all Re W™ Let Pen

be such that T ¢ P. Then &(P)(i) = 1/|T| for all i e T. Suppose

q Pl € T such that Pl domR(O) P for‘some R ¢ Pl’ i.e., Q(Pl)(i) >
¢(P)(i) for all i e R. Let R' be any minimal winning coalition con-
tained in R, i.e. R'c R and R' e W™. Let P2 € T be such that

R' € P,. Then since T does not exhibit the paradox, ¢(P,)(i) Z_Q(Pl)(i)

for all i e R'. Also

1/|R'| if ie R

*(P,) (1)

0 otherwise.

Since- I' is proper, R' N T # #. Hence for all ie R'n T,
1/|R'| = o(P,)(i) > ¢(P )({)
(since |R'| > |T]) [

v

®(P)(i) = l/|T|, which is a contradiction

Let

(7.11) e t = min |R|
new“

and let

(7.12) m = {P € N: P contains a winning coalition of size t)}.

Then we obtain the following.
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Corollary 7.5. Let T bea proper simple game that does not exhibit the

paradox of smaller coalitions w.r.t. ¢. Then Ko(o) > nt.

That in general we cannot strengthen the above result is shown by

the following example.

Example 7.6. Let T be a 4-person game represented by s 2,201 0%
The minimal winning coalitions are {(12), (134), (234)}. The Shapley

value is given by

((1/2, 1/2, 0, 0) If P o= (12)(34) or (12)(3)(n)
(1/2, 1/2, 0, 0) if P = (123)(4) or (124)(3)
o(P) = { (173, 0, 1/3, 1/3)  if P = (134)(2)
(0, 1/3, 1/3, 1/3)  if P = (1)(23u4)
\(1/3, 1/3,{ 1/6, 1/6) if P = (1234)

Note fhat the game does not exhibit the parédox of smaller coalitions.
Also t =2, and n, = {(12)(3)(4), (12)(34)}. However,

KO(O) = {(12)(3)(4), (12)(34), (123)(4), (124)(3)}. Observe that
players 3 and 4 are dummies in the subgame on {1,2,3} and {1,2,u}

respectively.

An interesting problem raised by Theorem 7.4 is to characterize
the class of games that do not exhibit the paradox of smaller coalitions
w.r.t. ®. Let us look at symmetric games. A game (N,v) is called
symmetric if the value of a coalition depends only on the size of the

coalition. A symmetric monotonic simple game is of the type Mn %" (N,W)
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where W = {R ¢ N: |R| > k}. The following proposition follows

from the symmetry axiom of the Shapléy value.

Proposition 7.6. Let T be a symmetric simple game. Then T does

not exhibit the paradox of smaller coalitions w.r.t. ¢. In fact,

xo(o) = nt.

Proof: The Shapley value is given by

1/|R| if ie€eReP and Re W

*(P)(i) =
0 otherwise.

Hence the result follows from Statement- (7.5). [ ]

Since Example 7.6 does not exhibit the paradox and.is not symmetric,.
Proposition 7.6 is not a complete characterization. A list of all proper
simple games with four or fewer players is given in the appendix along with
the Shapley value ¢ corresponding to éll coalition structures, KO(O),
and whether or not the game exhibits the paradox.

Another interesting problem is to determine, if possible, a power
index that has all thé desirable properties of the Shapley value but that
does not exhibit the paradox of smaller coalitions.

The most critical axiom of the Aumann-Dreze generalization of the

Shapley value is A.3.
é;a_- .P(V‘fu) = ’P(v) + .P(“).

This axiom is acceptable if and only if we assume that the c.s. P is fixed




and that players in a coalition Pk e P cénnot bargain on the basis of the
values of coalitions not contained in Pk' This assumption is not appro-
priate for our model where the players are bargaining for a coalition
structure and no c.s. is fixed. :

Another generalization of the Shapley value (which he defined only for

the grand coalition) to the case of all coalition structures which is

appropriate for monotonic simple games is as follows.

(i) The Shapley value corresponding to the grand coalition is
used as an a priori measure of power of the players. This
is suggested by Shapley and Shubik [0 ].

(ii) And within any coalition in a c.s., a player can expect to
share in the payéff proportional to his power as defined in

(i). This is suggested by Gamson [ 8].

A;sumbtions (i) and (ii) define a unique value for all monotonic simple

games which we denote by ¢'. He‘can define &' by axioms as follows:
The (generﬁlized) Shapley value ¢' is a function ffom m x GN

to Bn, i.e., a function that associates with each game and a c.s. a

payoff vector satisfying the following axioms:

A'.1 (Relative Efficiency): 0'(P,v)(Pk) = Q(Pk) for all Pk € P, and

all P e m.

A'.2 (Symmetry): For all P ¢ N, and all permutations a of N under

which P is invariant,

' (P,axv)(R) = ¢'(P,v)(aR) for all R < N.

-




A'.3 (Additivity): If v and u are games in GN, then

@' ((N),v+u) = o' ((N),v) + &' ((N),u)

A'.4 (Null Player Axiom): If i is a null player, then

¢'(P,v)(i) = 0 for all P e 1.

)

A'.5 (Proportionality): For all P e I,

'(P,v)(i) . o' ((N),v)(]) = 0" (P,v)(3) - &' ((N),v)(d)

for all i,j e P« P.

When P = (N), Axioms A'.l-A'.4 are equivalent to Shapley's axioms
which specify the unique value given by Expression (7.3). Denote
¢'((N),v) by ¢(v) = (¢l(v),...,¢n(v)). (Since &'((N),v) = Q(N)(v)

our notation is consistent.) Next we obtain the following result.

Theorem 7.7. Fix N = {1,...,n} and let &N denote the set of all
monotonic games on N. Then there is a unique value satisfying Axioms

A'.1-A'.5 given by Expression (7.3) and

.(v)
r-——ltl————— L v(Pk) where Pk € P is such that
I ¢
ieP ¢ R
k 3 € Pk’ if j is not a null player
(7.13) ¢'(P,v)(j) = <
L 0 if j is a null player




Proof: It can be easily shown that Statements (7.3) and (7.13) satisfy

Axioms A'.1-A'.5. Uniqueness follows from Axioms A'.l and A'.5. [:] r

Corollary 7.8. Let T be a monotohic simple game. Then T does not

exhibit the paradox of smaller coalitions w.r.t. ¢'. i
Proof: This follows from Expression (7.13).

In view of Corollary 7.5, we might be tempted to assert that

KO(O') > nt. However, the following example shows that it is not true.

Example 7.7. Consider the weighted majority game given in Example 7.5

[3; 2,1,1,1]. Then ¢' is given by

((3/6, 1/6, 1/6, 1/6) if P = (1234)
(3/5, 1/5, 1/5, 0)  if P = (123)(u4) ;
o)t - :
- (3/4, 1/4, 0, 0) ke P = (12)(3)(4) or (12)(34)
(0, 1/3, 1/3, 1/3)  if P = (1)(234). .

For all other c.s.'s, ®'(P) can be determined by the symmetry of players
2, 3, and 4, It is clear "that Ko(o') = {(1)(234)}. Note that in this

example t = 2, hence (1)(234) ¢ M-

Let

(7.14) s=min [ ¢.(v),
Rcwm AR

fﬂhen there is no doubt about the game v under consideration, we shall
denote @¢'(P,v) by ¢'(P) which is consistent with the established

notation.
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and let

(7.15) R = {P e 1: P contains a coalition R such that J 01(v) = s}.
ieR

Then we have the following important fact.

Theorem 7.9. Let T be a proper simple game. Then KO(O') =n.

Proof: Denote ¢'((N)) by ¢ = (¢l,...,¢n). Let P1 € M_. Suppose

L
P2 € T such that P2 domR(Q ) Pl for some R € P2 such that R e P.
Then o'(Pz)(i) > o'(Pl)(i) for all ie R. Let Te Pl be such that

Tew" and Z $; = s Since T is proper Rn T # . Pick je Rn T.
ieT

Then 0'(Pl)(j) = ¢j/s. Since j € R, 0'(?2)(5) = oj/(iER Oi) > ¢j/s,
- . . s '
i.e., iER ¢; < s, a contradiction! Hence K0(¢ ) > n_.
Let P, enNl  and P,e NI be such that P, ¢ 1 . Then
1 s 2 2 s
P, dom (#') P, where T e P. such that T e W" and I ¢. =s because
1 T 2 1 jeT 1
Q(Pl)(i) = ¢i/s for all i e T and Q'(Pz)(i) < ¢i/s for all ie T.

Hence Ko(o') € m_- O

8. Solutions with Respect to the Bargaining Set Mil)

The bargaining set was first introduced by Aumann and Maschler [3].
They defined several types of bargaining sets. One of these, denoted by
Mii), was shown to be nonempty for every c.s. by Peleg [16].

Let x" denote a vector in E' where r = [R|, whose elements are

indexed by the players in R. Let x € I(P) and let i and j be two

distinct players in coalition Pk € P. An objection of i against j to

x ¢ I(P) is a vector yR, where R is a coalition containing player i




but not j, whose coordinates Yy satisfy Y; > Xis Yy > %Xy V2eR

and Z ¥y v(R). A counter-objection to this objection is a vector

2eR
Z , where D is a coalition containing player j but not i, whose

g Satisfy 2z, > x, for each 2 ¢ D, zZ, 2y, for each
LeRnD, and ) z, = v(D).
LeD
x € I(P) is stable if for each objection to x, there is a counter-

coordinates z

objection. The bargaining set correéponding to the c.s. P e NI, denoted

by Mii)(P) is the set of all stable individually rational payoff

x e I(P), i.e.,

(8.1) Mii)(P) = {x e I(P): x is stable}.

Theorem 8.1. Let T be an n-person cooperative game with side payments.

Then Mii)(P) £ @ for each P e .

Proof. See Davis and Maschler [7 ] and Peleg [161].

As a result H(Mi?)) = I. The bargaining set is a natural payoff solution
concept to study the solutions J0 and Kd for the following reasons:
(i) the bargaining set for each c.s. consists of payoffs that

are stable in the sense of objections and counter-obiections.

If for a particular c.s., a payoff is not in the bargaining

set, some player would have a justified objectioﬁ (an

objection that has no counter-objection) which when carried

out would result in breakup of the coalition structure.

Hence we are not justified in using unstable payoffs

corresponding to a c.s. to dominate another c¢,s. Also,

(ii) the bargaining set is nonempty for each coalition structure.
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(i)

We shall now determine KO(Ml

) for all 3-person games with side

payments.

Consider the 3-person game given by N = {1,2,3},

v(l) = v(2)

v(3) = 0, v(12) = a, v(13) = b, v(23) = ¢,
(8.2)

and v(123)

d, where 0<a<b<c and d > 0.

Theorem 8.2. Let T be a 3-person game as in (8.2) with d > (atbtc)/2.

(i) If 4 <c, then KO(M:(Li))

{(1)(23)}

i

(ii) 1If then 'xo(Mii)) {(1)(23), (123)}

(=¥
"
0
.

(441 1F a5 ¢, O Ko(Mii)) {(123)}.

Proof: (i) 1In this case we have (a+b)/2 + ¢/2 < d < ¢/2 + ¢/2, hence

a+b < ¢. The bargaining set is given by

((0, 0, 0) if P = (1)(2)(3),
(0, a, 0) if P = (12)(3),
.3 K@) = (0, 0, b . if P = (13)(2),
Conv{(0, c-b, b), (0, a, c-a)} £ P = (1)(29),
\(o, d/2 - (b-a)/2, d/2 + (b-a)/2) if P = (123)

Clearly (1)(23) dom(M{')) (12)(3) and (1)(23) aomM{H) (13)(2).
Also since (0, c/2 -~ (b-a)/2, ¢/2 + (b-a)/2) € Mii)((l)(23)) and

c>d, (1)(23) dom(Mii)) (123). The transition graph is shown in

Figure 8.1. Hence Case (i) follows.




(ii) In this case, the bargaining set is as in (8.3) except for

c.s. (123) which is

P29 = M .

Therefore (ii) follows. (See Figure 8.2.)

(iii) Case 1) c > atb

Here the bargaining set is as in (8.3)  except for c.s. (123)

which is given by

(i) < :
“1 ((123)) = {(xl,xz,xa). X, + X, 23, X+ Xy > b, x, + Xy 2 Cs and

X, * Xyt Xy = d}.

For each (0, Xy c-xy) € Mii)((l)(ZS)) where a <%, < c-b, we have
((d-c)/3, X, + (d-c)/3, c-=x, + (d-c)/3) € Mil)((l23)). Hence

(123) dom(Mii)) (1)(23). The transition digraph is shown in Figure 8.3.

(iii) Case 2) c < atb

In this case the bargaining set is given by

7 (0, 0, 0) if P = (1)(2)(3),
(py» Pyr 0) if P = (12)(3),
(i) " ' *
(8.4) M@ =( (), 0, p) if P = (3)2),
(o, Pys pa) if P = (1)(23),
\Co((123)) if P = (123).
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(1)(2)(3)
(12)(3 (123)

(13)(2—> (1)(23)

Figure 8.1. The transition digraph in Theorem 8.2, (i).

(1)(2)(3)

(12)(3)
e (123)

(13) (29— (1)(23)

Figure 8.2. The transition digraph in Theorem 8.2, (ii).

(1)(2)(3)
(12)(3) —p— (123)
(13)(2) e (1)(23)

Figure 8.3. The transition digraph in Theorem 8.2, (iii) case 1).




{
a
b |
|

, where p, = (atb-c)/2, P, * (atc-b)/2, Py = (b+c—a)/2, and

Co((123)) = ((xl,x ,x3): X, + x

1 2:a,x + x, >b, x +x33_c,

1 3 2

and xl+x2+x3=d}.

2

Let p = (pl tp,t pa), then clearly,

(p, + (d-p)/3, p, + (d-p)/3, p, + (a-p)/3) € H{)((123))
Hence c.s. (123) dominates (w.r.t. Mii)) every other c.s. This
case completes the proof of the theorem. [ ]

Theorem 8.3. Let T be a 3-person game as in (8.2) with d = (atbtc)/2.

(1) If c<ap then K W) = (12)(3), 13)2), (W(29), (123)).

(ii) If ¢ > atb then Ko(Mii)) {(1)(23)}.

Proof: (i) 1In this case, the bargaining set is as in (8.4) with
Mii)((123)) = (pl, Py pa). The result clearly follows.
(ii) In this case, the bargaining set is as in (8.3). Since

d < ¢, the result follows. [_]

Theorem 8.4. Let T be a 3-person game as in (8.2),. with d < (atbtc)/2.

{(12)(3), (13)(2), (1)(23)}).
{(1)(23)).

(i) If c < atb then Ko(Mii))

(ii) If c > atb then Ko(Mii))

Proof: (i) In this case, the bargaining set is as in (8.4) except for

c.s. (123) for which it is given by
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r(pl + (d-p)/3, P, * (d-p)/3, Pyt (d-p)/3)

if 2c-a-b < d

8.5) Mi"((m)) . < (0, 4/2 - (b-a)/2, d/2 + (b-a)/2)

if b-a < d < 2c-a-b

k(0, 0, d) if d < b-a.

In all cases, theé transition graph is presented in Figure 8.4. Therefore

(i) follows.

(ii) 1In this case the bargaining set is as in (8.3) except for
c.s. (123) for which the bargaining set is as in (8.5). The transi-

tion graph is shown in Figure 8.5. Hence the result follows. [:]

(1)(2)(3)

(12)(3) 2 (123)

(13)(2) (1)(23)

Figure 8.4. The transition graph in Theorem 8.4, (i).
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(1)(2)(3)

(12)(3) (123)

(13)(2) * - (1)(23)

Figure 8.5. The transition graph in Theorem 8.4 (ii).
Since Theorems 8.2, 8.3 and 8.4 cover all cases, we have proved

the following.

Theorem 8.5. Let T be a 3-person game as in (8.2). Then

(i)
KoM ") # 0.

For every P e N, if x € I(P) belongs to Co(P), then no player can

have an objection against another player. Thus if Co(P) # @,

Co(P) < Mii)(P). Hence the p.s.c. Mii) satisfies the hypothesis of

Corollary 6.2. So we obtain the following. :

Lemma 8.6. Let T be an n-person game. If N(Co) # § then

K1) £ 0. 1n face kWD) 5.

Proof: This is a consequence of Corollary 6.2 and Theorem 6.3. ||

No general existence theorem for Ko(Mii)) is known at this time.

Example 8.1 illustrates a pathology for KO(M:(Li)) which is due to

:I;-.
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a "flaw" in the properties of the bargaining set.

Example 8.1. Let T be'a S-person game with

v(12) = 10, wv(35) = 85, wv(134) = 148, v(2345) = 160, and

v(R) = 0 for all other R c N.
A simple computation reveals that the bargaining set is given by

(0, 10, 0, 0, 0) if P = (12)(3)(4)(5), (12)(3)(45),
(12)(345) or (12)(3u)(5),

(0o, 0, 85, 0, 0) if P = (1)(2)(35)(u4), (14)(35)(2),

(124)(35) or (1)(2u)(35),
uep) - ‘

— N

(0, 0, 148, 0, 0) if P = (134)(2)(5) or (134)(25),

(0, 10 < x, < 12, 160-x,, 0, 0)' if P = (1)(23us),

2

(o, 10, 85, 0, 0) if P = (12)(35)(4),

L(O, 0, 0, 0, 0) for all other P € I.

Note that in every c.s. that contains a coalition which has a positive
value, at least one player in the coalition gets zero payoff in the
bargaining set. As a result, due to Condition B.5 in the definition of

domination, no c.s. dominates another c.s. Hence Ko(Mii)) =n.

The above example exhibits a flaw in the properties of the bargaining

set. E.g., in the c.s. (12)(35)(4) player 5 gets zero payoff in the

*Denotes the set {(O0, Xy 160-x2'. 0, 0): 10 L%, < 12}.




bargaining set. This is because player 5 has no 'bargaining power' at

all vis-d-vis player 3.

Since there are no coalitions with a positive

value that contains player 5 but not player 3, player 5 cannot even |

object! However the payoff in the bargaining is counter-intuitive E

because we could argue:
player 3 if his share of the resulting coalitional value is the same as
what the player could have obtained had he been in a coalition by himself?
In this respect, we could say that the bargaining set is derived entirely
from the bargaining positions of the players in the process of coalifion
formation in contrast with the Shapley value which is derived entirely
from the characteristic funétion of the game. These two p.s.c.'s reflect
two extreme view points in looking at solutions of cooperative games in
characteristic function form. A major research problem is to define a

p.s.c. that exhibits both the strategic value and the bargaining power of

the players.

One method of attacking this problem in the case of the bargaining
set is to regard the bargaining set as an idealization (of the bargaining
process) and relax the definition of an objection by €, where € is a
small positive real number.
§ be two distinct players in a coalition P, ¢ P. An e-objection of
i against j is a vector yR, where R is a coalition containing player

{ but not j, whose coordinates Yy satisfy Yy > %t é, Yy 2%,

for all & ¢ R, and

each ¢-objection in x,

(1)
1l,€

c-stable x ¢ I(P),

set, denoted by M

i
LeR .
c-objection is defined as before.

, corresponding to c.s. P e N is the sef of all

i.e.,

Why should player 5 enter into a coalition with -

More formally, let x € I(P) and i and

v(R). A counter-objection to this

there is a counter-objection. The e-bargaining .

k

We say x € I(P) is e-stable if for

-46~-
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(8.6) Miiz(P) = {x € I(P): x is e-stablel.
. s :

We could regard € as a 'sacrifice' each player is willing to make (if

necessary) for coalitional stability.
Note that the results in Theorems 8.2, 8.3, 8.4 and 8.5 as well
as Lemma 8.6 remain unchanged if we replace Mii) by Milz.
= ]

Example 8.2. Consider the game in Example 8.1. The e-bargaining set

is given by

((0 < x, <€, 10-x,, 0, 0, 0) if P = (12)(3)(4)(5),

1 1’

(12)(3)(u5), (12)(3u5) or (12)(3u4)(5),

(0, 0, 85-x,, 0, 0 < x, <€) if P = (1)(2)(35)(n),
(14)(2)(35), (124)(35) or (1)(24)(35),

(0 < x, <€, 10-x), 85-x., 0, 0 < x, <€) if P = (12)(35)(),

1

(0 < x <€, 0, 148-x,-%,, 0 <x, <k, 0) if P = (134)(25) or

(134)(2)(5),

(0, 10-¢ <%, < 12+e, 160-x,-X, -X ., O <% 26 0 < % £ &)

o e T
: if P = (1)(2345),

(0, 0, 0, 0, 0) for all other P € I.
.

It is clear that KO(M:ﬁ:) = {(12)(35)(4), (13u4)(2)(5), (134)( 25),

(1)(2345)} which is more intuitive than KO(M_(Ii)) =

Example 8.3. (The Chemical Company Game. See Anderson and Traynor (1l1.)
Two chemical companies Cl and 02 supply two fabricating companies
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F, and F2.' The permissible coalition structures are:

P, = (€)(C,)(F,)(F,), P, = (C)F )(C,)(F)), |
.Ps = (C,F,)(C,)(F)), P, = (€ )(CF )(F,), 1
Pg = (C,)(C;F) )(F)), Pg = (CF(C,F)), - ;.
P7 = (clrz)(czrl).

The respective payoffs (profits) to these coalitions in the particular |

coalition structures are:

25, 15, 75, 100. P.: 300, 25, 110. I

Py 2

P,: 500, 30, 85. P,: 28, 200, 105.

Pg: 30, 425, 90. Pg: 400, 600.

P,: 700, 300. _ ;.

This “partition function" induces the characteristic function:

v(cl) = 25, v(C2) = 15, v(rl) = 75, v(P2) = 100, v(cl,rl) = 300,

v(c),F,) = 500, v(C,,F ) = 200, v(C,,F,) = u25.

The bargaining set Mii) is given by

(25, 15, 75, 100) if P=P

s o { (115 < x, < 225, 15, 300-x,, 100) if P =P,
. (%0 < x, < 225, 15, 75, 500-x)  if P =P, .

(25, 15 < x, < 125, 200-x,, 100) if P =P,

e —
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(25, 15 < %,

(i) v
“l (P) =

< 125, 75, 425-x,) if P

(xl, X,s 300-x1, u25-x2) it P

Ps

s

where x5 x2 are as in Figure 8.6.

Pa

\ where ¥y» ¥, are as in Figure 8.7.

{ 150

4 125 12571

+ 15 154
———t AP it
90 115 225 xl 90 115

Figure 8.6. The bargaining
set Mil) (PG) for the chemical

company game.

Figure 8.7,

200 225

The bargaining

»>—
¥y

set Mil)(P.’) for the chemical

. company game.

The transition digraph is shown in Figure 8.8. Hence

(1),
KoM 1) = (e F I (C,F), (CF ) (C,F ).
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Figure 8.8. The transition digraph of the chemical company game.

9. Some Modifications of the Coalition Structure Model |
[

In this section, we look at some modifications of the domination

relation in the abstract game (N(S),dom(S)). We define two other
domination relations one of which is stronger than dom(S) and the ,1

other weaker than dom(S). .

Definition 2.1. Let Pl’ Pze n(S) and S be a p.s.c. Then P.l

weakly dominates Pz, denoted by Pl w-dom(S) P2, iff

(9.1) for each y e S(P,), 3 a nonempty R € Pl and x € S(P,)

such that x>y for all i € R.

RN RSO, T




Definition 9.2. Let Pl’ P2 € N(S) and S be a p.s.c. Then Pl

strongly dominates P2, denoted by Pl s-dom(S) P2, iff 3 a nonempty

R € Pl and x € S(Pl) such that for all y ¢ S(Pz), X: >y for all

i e R,

The following relations are direct consequences of Definitions 3.6,

9.1 and 9.2.

(9.2) If Pl s-dom(S) P2, then Pl dom(S) P2.

(9.3) If Pl dom(S) P2, then Pl w-dom(S) P2.

Let K. (S) and K_ (S) denote the cores of the abstract games
o,w 0,s
(n(S),w-dom(S)) and (N(S),s-dom(S)) respectively. As a consequence of

Relations (9.2) and (9.3), we have
(9.4) : Ko,s(S) > KO(S) > Ko,w(s)‘

Also, if S is a p.s.c. such that for each P e I, S(P) is

either a single point set in E" or an empty set, then

K, (S).

O,w

(9.5) KO,S(S) = KO(S)
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APPENDIX

The Aumann-Dreze Generalization of the Shapley Value for all

Simple Games with Four or Fewer Players

The table on the following pages contains all distinct proper simple
games of four or fewer players excluding dummies. All winning coalitions
are listed--the minimal winning coalitions are listed first and separated
from the rest by a semicolon. The weighted voting representation given in
column 4 are the simplest ones. The Shapley value ¢ of a c.s. depends
only on the winning coalition contained in the c.s. The Shapley value
of all c.s.'s containing winning coalitions, in the sequence as in column 3,
is given in column 5. The Shapley value of a c.s. not containing any
winning coalition is zero for each player and therefore is not given in
column 5. Column 6 contains all c.s.'s in K0(¢) identified by the
winning coalition it contains. The last column indicates whether the game

exhibits the paradox of smaller coalitions or not.
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